PAC-bayes bounds with data dependent priors

نویسندگان

  • Emilio Parrado-Hernández
  • Amiran Ambroladze
  • John Shawe-Taylor
  • Shiliang Sun
چکیده

This paper presents the prior PAC-Bayes bound and explores its capabilities as a tool to provide tight predictions of SVMs’ generalization. The computation of the bound involves estimating a prior of the distribution of classifiers from the available data, and then manipulating this prior in the usual PAC-Bayes generalization bound. We explore two alternatives: to learn the prior from a separate data set, or to consider an expectation prior that does not need this separate data set. The prior PAC-Bayes bound motivates two SVM-like classification algorithms, prior SVM and ηprior SVM, whose regularization term pushes towards the minimization of the prior PAC-Bayes bound. The experimental work illustrates that the new bounds can be significantly tighter than the original PAC-Bayes bound when applied to SVMs, and among them the combination of the prior PAC-Bayes bound and the prior SVM algorithm gives the tightest bound.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-dependent PAC-Bayes priors via differential privacy

The Probably Approximately Correct (PAC) Bayes framework (McAllester, 1999) can incorporate knowledge about the learning algorithm and data distribution through the use of distributiondependent priors, yielding tighter generalization bounds on data-dependent posteriors. Using this flexibility, however, is difficult, especially when the data distribution is presumed to be unknown. We show how an...

متن کامل

PAC-Bayes Analysis of Multi-view Learning

This paper presents eight PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers. These bounds adopt data dependent Gaussian priors which emphasize classifiers with high view agreements. The center of the prior for the first two bounds is the origin, while the center of the prior for the third and fourth bounds is given by a data dependent vector. An important tech...

متن کامل

Entropy-SGD optimizes the prior of a PAC-Bayes bound: Data-dependent PAC-Bayes priors via differential privacy

We show that Entropy-SGD (Chaudhari et al., 2017), when viewed as a learning algorithm, optimizes a PAC-Bayes bound on the risk of a Gibbs (posterior) classifier, i.e., a randomized classifier obtained by a risk-sensitive perturbation of the weights of a learned classifier. Entropy-SGD works by optimizing the bound’s prior, violating the hypothesis of the PAC-Bayes theorem that the prior is cho...

متن کامل

Data Dependent Priors in PAC-Bayes Bounds

One of the central aims of Statistical Learning Theory is the bounding of the test set performance of classifiers trained with i.i.d. data. For Support Vector Machines the tightest technique for assessing this so-called generalisation error is known as the PAC-Bayes theorem. The bound holds independently of the choice of prior, but better priors lead to sharper bounds. The priors leading to the...

متن کامل

Tighter PAC-Bayes bounds through distribution-dependent priors

We further develop the idea that the PAC-Bayes prior can be informed by the data-generating distribution. We prove sharp bounds for an existing framework of stochastic exponential weights algorithms, and develop insights into controlling function class complexity in this model. In particular we consider controlling capacity with respect to the unknown geometry defined by the datagenerating dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012